A New Critical Phenomenon for Semilinear Parabolic Problems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Exponents for a Semilinear Parabolic Equation with Variable Reaction

In this paper we study the blow-up phenomenon for nonnegative solutions to the following parabolic problem: ut(x, t) = ∆u(x, t) + (u(x, t)) , in Ω× (0, T ), where 0 < p− = min p ≤ p(x) ≤ max p = p+ is a smooth bounded function. After discussing existence and uniqueness we characterize the critical exponents for this problem. We prove that there are solutions with blow-up in finite time if and o...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A second-order positivity preserving scheme for semilinear parabolic problems

In this paper we study the convergence behaviour and geometric properties of Strang splitting applied to semilinear evolution equations. We work in an abstract Banach space setting that allows us to analyse a certain class of parabolic equations and their spatial discretizations. For this class of problems, Strang splitting is shown to be stable and second-order convergent. Moreover, it is show...

متن کامل

Diffusion versus absorption in semilinear parabolic problems

We study the limit, when k → ∞, of the solutions u = uk of (E) ∂tu−∆u+ h(t)uq = 0 in RN × (0,∞), uk(., 0) = kδ0, with q > 1, h(t) > 0. If h(t) = e−ω(t)/t where ω > 0 satisfies to R 1 0 p ω(t)t−1dt < ∞, the limit function u∞ is a solution of (E) with a single singularity at (0, 0), while if ω(t) ≡ 1, u∞ is the maximal solution of (E). We examine similar questions for equations such as ∂tu−∆u + h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1998

ISSN: 0022-247X

DOI: 10.1006/jmaa.1997.5825